Physik: Relativitätstheorie und Raum-Zeit-Diagramme

Gehört zu: Physik
Siehe auch: Kosmologie, Tensoren, Lineare Algebra, Metrik
Benutzt: WordPress-Plugin Latex, Grafiken von Github, Grafiken von Wikipedia

Was ist mit “Relativität” gemeint?

Der Begriff der “Relativität” von physikalischen Vorgängen dreht sich darum, dass ein und dieselbe Beobachtung von verschiedenen Beobachtern in verschiedenen Koordinatensystemen gemacht wird. Bei den oben genannten “physikalischen Vorgängen” handelt es sich um die Messung physikalischer Größen wie:

  • Zeit
  • Ort
  • Geschwindigkeit
  • Impuls
  • Kinetischen Energie
  • Lorentz-Kraft
  • Maxwell-Gleichungen

Dabei könnten zwei Beobachter immer zu übereinstimmenden Ergebnissen kommen (so etwas nennt man dann “invariant”) oder es ergeben sich manchmal unterschiedliche Ergebnisse (“variant”). Im letzteren Fall kommt es also darauf an, welcher Beobachter diese Messung gemacht hat. Somit sind die Ergebnisse also “relativ” zu einem bestimmten Beobachter zu sehen.

Im Falle einer solchen Relativität möchte man die Messergebnisse zwischen Beobachtern formelmäßig “transformieren” können. Dafür betrachten wir nur Beobachter, die sich gleichförmig und gradlinig zu einander bewegen, also ohne Beschleunigung. Solche Beobachter bzw. deren Koordinatensysteme (Ort und Zeit) nennen wir “Inertialsysteme“. Ein Beobachter beobachtet Ereignisse, denen er jeweils Ort und Zeit zuordnet.

Raum-Zeit-Diagramm

Solche Ereignisse kann man sich als Punkte in einem sog. Raum-Zeit-Diagramm veranschaulichen, wo die auf der einen Achse die drei Raum-Dimensionen x, y, z auf eine Dimension vereinfacht werden: x. Es bleibt als zweite Achse die Darstellung der Zeit, wobei es sich später als elegant erweisen wird, statt der “echten” Zeit das Produkt aus Lichtgeschwindigkeit und der Zeit, also c · t abzutragen.

Ein Minkowski-Diagramm ist eine ganz einfache grafische Darstellung, nämlich ein rechtwinkliges zweidimensionales Koordinatensystem mit einer Zeitachse und einer Raumachse (also der dreidimensionale Raum auf eine Dimension vereinfacht). Beobachter, die sich gleichförmig und gradlinig bewegen (Inertialsysteme), haben dann als sog. “Weltlinie” eine Gerade.

Abbildung 1: Minkowski-Diagramm eines Photons (Github: Minkowski_Diagram_Photon.svg)

Weltlinie eines Photons

Mit so einem Raum-Zeit-Diagramm stellen wir also einen 2-dimensionalen Vektorraum dar und suchen nach Transformationen, die Koordinaten eines Ereignisses von einem Koordinatensystem in ein anderes transformieren. Da es sich bei den Koordinatensystemen um Intertialsystem handeln soll, könnten wir vermuten, dass die Transformationen auch ganz einfache sind z.B. Linerare Transformationen, die dann als Matrix dargestellt werden könnten.

Relativität bei Gallileo

Bei Galileo sind die die physikalischen Gesetze, speziell die Bewegungsgleichungen, identisch in allen Inertialsystemen. Es gibt kein bevorzugtes System, was etwa “in Ruhe” wäre. Jede Bewegung muss relativ zu einem Bezugspunkt gemessen werden.

Speziell für Geschwindigkeiten gilt nach Gallileo das auch intuitiv einleuchtende “Additionsgesetz” d.h. wenn ein Beobachter in seinem System ein Objekt mit der Geschwindigkeit v1 misst, dann wird ein anderer Beobachter, der sich relativ zum ersten Beobachter mit der Geschwindigkeit v bewegt, die Geschwindigkeit desselben Objekts zu v2 = v1 + v messen. Wobei da noch die Richtungen berücksichtigt werden müssen, also: \( \vec{v_2} = \vec{v_1} + \vec{v} \)

Auch die Lichtgeschwindigkeit wäre in unterschiedlichen Inertialsystemen unterschiedlich.

Die Galilieo-Transformationsgleichungen wären demnach:

\(  \tilde{t} = t \\ \tilde{x} = -v \cdot t + x \\\)

Was als Galileo-Transformationsmatrix ergibt:

\( F = \left[ \begin{array}{rr} 1 & 0 \\  -v & 1 \\  \end{array} \right] \\ B = \left[ \begin{array}{rr} 1 & 0 \\  v & 1 \\  \end{array} \right] \)

Wobei F (=foreward) und B (=backward) wieder die Identität ergeben.

Youtube Video eigenchris 103d: https://youtu.be/ndjiLM5L-1s

Abbildung 2: Galilio-Transformation (Github: Gallileo.svg)

Gallilieo.svg

Gallileo/Newton-Transformation (blau -> rot)

Bei der Koordinatentransformation nach Gallileo/Newton verschiebt sich “nur” die x-Achse, die Zeit (t) ist in jedem bewegten Inertialsystem gleich. Deswegen würde jede Geschwindigkeit (also auch die Lichtgeschwindigkeit) verändert.

Lorentz & Co.

Die sog. Lorentz-Transformationen entstanden nach 1892 um zunächst die damals vorherrschende Äthertheorie in Einklang mit den Ergebnissen des Michelson-Morley-Experiments zu bringen. (Albert A. Michelson 1881 in Potsdam). Die Lorentz-Transformationen wurden erst 1905 von Heny Poicaré (1854-1912)  so formuliert, wie wir sie heute kennen:

\(  c \cdot \tilde{t} = \gamma (ct – \beta x) \\ \tilde{x} = \gamma ( -\beta c t + x) \)

wobei \( \beta = \frac{v}{c}  \) und \( \gamma = \frac{1}{\sqrt{1-\beta^2}} \)

Wobei diese Faktoren so bestimmt sind, dass die Lichtgeschwindigkeit in allen Intertialsystemen gleich ist.

Als Lorentz-Transformationsmatrix ergibt sich:

\( F = \gamma \left[ \begin{array}{rr} 1 & -\beta \\  -\beta & 1 \\  \end{array} \right] \\ B = \gamma \left[ \begin{array}{rr} 1 & +\beta \\  +\beta & 1 \\  \end{array} \right] \)

Youtube Video eigenchris 104b: https://youtu.be/240YGZmV1b0

Abblidung 3: Lorentz-Transformation (Github: Lorentz.svg)

Lorentz Transformation

Lorentz-Transformation (blau -> rot)

Bei der Lorentz-Transformation werden beide Achsen in Richtung auf die Diagonale gedreht. Dadurch werden die ursprünglichen Quadrate zu Rhomben und die Lichtgeschwindigkeit beibt gleich (die Diagonale). Damit bleibt die Skalierung (also die Achsenteilungen) bei der Lozenz-Transformation so, dass die Flächen der Rhomben gleich den Flächen der ursprünglichen Quadrate sind (Determinante = 1). Für diese Skalierung sorgt der Faktor γ (siehe oben).

Auch der Begriff der Gleichzeitigkeit wird relativ (https://en.wikipedia.org/wiki/Relativity_of_simultaneity)

Abbildung 4: Gleichzeitigkeit (Wikipedia: https://en.wikipedia.org/wiki/Relativity_of_simultaneity#/media/File:Relativity_of_Simultaneity_Animation.gif)
Relativity of Simultaneity (Copyright: Wikipedia)

SRT Einsteins Spezielle Relativitätstheorie

Albert Einstein hat 1905 die sog. “Spezielle Relativitätstheorie” formuliert. Ausgehend von zwei Postulaten:

  • Die physikalischen Gesetze sind gleich in allen Intertialsystemen
  • Die Lichtgeschwindigkeit im Vakuum ist gleich in allen Intertialsystemen

leitet er daraus erstmals die Lorentz-Transformationen (s.o.) her.

Daraus wiederum ergeben sich die Phänomene:

  • Zeitdilatation
  • Längenkontraktion

SRT Minkowski-Raum – Minkowski-Metrik

Das Linienelement der Minkowski-Metrik

Hermann Minkowski (1864-1909) war ein deutscher Mathematiker, der zeitweise auch Einsteins Lehrer in Zürich war.
Ein Minkowski-Diagramm ist ja relativ locker definiert (s.o.) Von einem Minkowski-Raum spricht man, wenn man einen Vektorraum mit einer speziellen Metrik hat. Diese Minkowski-Metrik (siehe dazu: Minkowski-Tensor) wird definiert durch das Linienelement:

ds²  = c² dt² – (dx² + dy² + dz²)

Zwei Ereignisse in unserer Raumzeit e1 = (t1, x1, y1, z1) und e2 = (t2, x2, y2, z2) hätten nach dieser Metrik den Abstand s, der sich wie folgt errechnet:

\(  s^2 = c^2 (t_2 – t_1) – (x_2 – x_1)^2 – (y_2 – y_1)^2 – (z_2 – z_1)^2  \)

Das interessante an der Minkwski-Metrik ist, das sie invariant gegenüber Lorentz-Transformationen ist – was man leicht nachrechnen kann..

In so einem Minkowski-Raum, also mit der Minkowski-Metrik, lässt sich die Spezielle Relativitätstheorie (SRT) demnach sehr einfach grafisch darstellen eben weil diese Metrik Lorentz-invariant ist.

Man sagt auch: Wenn man unser Universum als Minkowski-Raum verstehen wollte, mit dieser Metrik,  wäre das ein “flacher” Raum, also nicht gekrümmt (so zu sagen ohne Gravitation).

Der Abstand bei der MInkowski-Metrik

Das Linienelement definiert auch die Länge von Linien, indem man entlang einer solchen Linie integriert.

Für den Abstand zweier Ereignisse können wir unterscheiden:

  • \( s^2 > 0 \) : Der Abstand ist “raumartig”
  • \( s^2 < 0 \) : Der Abstand ist “zeitartig”
  • \( s^2 = 0 \) : Der Abstand ist “lichtartig”

Auf eine Raum-Dimension vereinfacht, ist der Minkowski-Abstand also:

\( s^2 = c^2 t^2 – x^2 \)

Wenn wir als Beispiel s = 1 (raumartiger Abstand) nehmen, erhalten wir ein Hyperbel im Minkowski-Diagramm. Dort liegen also alle Punkte im ursprünglichen Bezugssystem (x,ct), die eine Abstand 1 vom Koordinatenursprung haben. Da dieser Anstand invariant ist, liegt dort also auch für jedes transformierte Bezugssystem (x’, ct’) der Punkt auf der transformierten Raum-Achse, der einen Abstand 1 vom Ursprung hat.
Wir müssen also immer daran denken, dass im Minkowski-Raum nicht die vom Diagramm “vorgegaukelte” Euklidische Geometrie gilt, sondern der Minkowski-Abstand.

Abbildung 5: Minkowski-Abstand (Github: hyperbel.svg)

Hyperbel.svg

Minkowski-Metrik

Einstein ART (Allgemeine Relativitätstheorie)

In Einsteins Allgemeiner Relativitätstheorie geht es um die Gravitation…

Ein Ausgangspunkt für die ART ist das sog. Äquivalenzprinzip. Es besagt, dass ein gleichmäßig bescheunigtes Bezugssystem nicht von einem Bezugssystem mit einem homogenen Gravitatiosfeld unterschieden werden kann. Formelmäßig ist dann die sog. “träge Masse” identisch mit der “schweren Masse”….

Quelle: Youtube Video https://youtu.be/hU0Mcd2-XH4

Bekannt sind seine berühmten sog. Feldgleichungen:

\( \Large R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Die obige Gleichung kann so kompakt hingeschrieben werden, weil sog. Tensoren verwendet werden.

Der Metrik-Tensor ist \( g_{\mu \nu} \). Gemäß Konvention laufen die Indices μ und ν = 0,1, 2, 3 wobei 0 die Zeit-Koordinate bedeutet.

\( T_{\mu \nu} \\\) ist der sog. Energie-Impuls-Tensor, den man im Vakuum einfach auf Null setzt (sog. Vakuumlösungen).

\( R_{\mu \nu} \) ist der sog. Ricci-Tensor – keine Ahnung, was das sein soll.

Was man immer wieder hört, ist dass nach Einstein große Massen die Raumzeit krümmen. Wobei die Krümmung der vierdimensionalen Raumzeit nicht in eine weitere Dimension (die fünfte) geht, sondern die Raumzeit “in sich” gekrümmt wird, soll wohl heissen, dass nicht mehr die Euklidische Metrik gilt, sondern eine andere Metrik, eine “Nichteuklidische Metrik“.

Siehe hierzu: Krümmung der Raumzeit